Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Viruses ; 16(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38675848

ABSTRACT

Rapid and early detection of infectious diseases in pigs is important, especially for the implementation of control measures in suspected cases of African swine fever (ASF), as an effective and safe vaccine is not yet available in most of the affected countries. Additionally, analysis for swine influenza is of significance due to its high morbidity rate (up to 100%) despite a lower mortality rate compared to ASF. The wide distribution of swine influenza A virus (SwIAV) across various countries, the emergence of constantly new recombinant strains, and the danger of human infection underscore the need for rapid and accurate diagnosis. Several diagnostic approaches and commercial methods should be applied depending on the scenario, type of sample and the objective of the studies being implemented. At the early diagnosis of an outbreak, virus genome detection using a variety of PCR assays proves to be the most sensitive and specific technique. As the disease evolves, serology gains diagnostic value, as specific antibodies appear later in the course of the disease (after 7-10 days post-infection (DPI) for ASF and between 10-21 DPI for SwIAV). The ongoing development of commercial kits with enhanced sensitivity and specificity is evident. This review aims to analyse recent advances and current commercial kits utilised for the diagnosis of ASF and SwIAV.


Subject(s)
African Swine Fever , Influenza A virus , Orthomyxoviridae Infections , Reagent Kits, Diagnostic , Sensitivity and Specificity , Animals , African Swine Fever/diagnosis , African Swine Fever/virology , African Swine Fever/epidemiology , Swine , Orthomyxoviridae Infections/diagnosis , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Influenza A virus/genetics , Influenza A virus/isolation & purification , African Swine Fever Virus/genetics , African Swine Fever Virus/isolation & purification , Clinical Laboratory Techniques/methods , Swine Diseases/diagnosis , Swine Diseases/virology , Molecular Diagnostic Techniques/methods
2.
Virology ; 594: 110049, 2024 06.
Article in English | MEDLINE | ID: mdl-38527382

ABSTRACT

The Second International Conference of the World Society for Virology (WSV), hosted by Riga Stradins University, was held in Riga, Latvia, on June 15-17th, 2023. It prominently highlighted the recent advancements in different disciplines of virology. The conference had fourteen keynote speakers covering diverse topics, including emerging virus pseudotypes, Zika virus vaccine development, herpesvirus capsid mobility, parvovirus invasion strategies, influenza in animals and birds, West Nile virus and Marburg virus ecology, as well as the latest update in animal vaccines. Discussions further explored SARS-CoV-2 RNA replicons as vaccine candidates, SARS-CoV-2 in humans and animals, and the significance of plant viruses in the 'One Health' paradigm. The presence of the presidents from three virology societies, namely the American, Indian, and Korean Societies for Virology, highlighted the event's significance. Additionally, past president of the American Society for Virology (ASV), formally declared the partnership between ASV and WSV during the conference.


Subject(s)
Influenza Vaccines , One Health , Viruses , Zika Virus Infection , Zika Virus , Animals , Humans , RNA, Viral , Virology
3.
Viruses ; 16(3)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38543715

ABSTRACT

African swine fever virus (ASFV) belongs to the family of Asfarviridae, part of the group of nucleocytoplasmic large DNA viruses (NCLDV). Little is known about the internalization of ASFV in the host cell and the fusion membrane events that take place at early stages of the infection. Poxviruses, also members of the NCLDV and represented by vaccinia virus (VACV), are large, enveloped, double-stranded DNA viruses. Poxviruses were considered unique in having an elaborate entry-fusion complex (EFC) composed of 11 highly conserved proteins integrated into the membrane of mature virions. Recent advances in methodological techniques have again revealed several connections between VACV EFC proteins. In this study, we explored the possibility of an analogous ASFV EFC by identifying ten candidate proteins exhibiting structural similarities with VACV EFC proteins. This could reveal key functions of these ASFV proteins, drawing attention to shared features between the two virus families, suggesting the potential existence of an ASFV entry-fusion complex.


Subject(s)
African Swine Fever Virus , African Swine Fever , Poxviridae , Vaccinia , Animals , Swine , Vaccinia virus/genetics , African Swine Fever Virus/genetics , African Swine Fever Virus/metabolism , Sequence Homology
5.
Front Cell Infect Microbiol ; 13: 1163569, 2023.
Article in English | MEDLINE | ID: mdl-38125905

ABSTRACT

The African swine fever virus (ASFV) is strongly dependent on an intact endocytic pathway and a certain cellular membrane remodeling for infection, possibly regulated by the endosomal sorting complexes required for transport (ESCRT). The ESCRT machinery is mainly involved in the coordination of membrane dynamics; hence, several viruses exploit this complex and its accessory proteins VPS4 and ALIX for their own benefit. In this work, we found that shRNA-mediated knockdown of VPS4A decreased ASFV replication and viral titers, and this silencing resulted in an enhanced expression of ESCRT-0 component HRS. ASFV infection slightly increased HRS expression but not under VPS4A depletion conditions. Interestingly, VPS4A silencing did not have an impact on ALIX expression, which was significantly overexpressed upon ASFV infection. Further analysis revealed that ALIX silencing impaired ASFV infection at late stages of the viral cycle, including replication and viral production. In addition to ESCRT, the accessory protein ALIX is involved in endosomal membrane dynamics in a lysobisphosphatydic acid (LBPA) and Ca2+-dependent manner, which is relevant for intraluminal vesicle (ILV) biogenesis and endosomal homeostasis. Moreover, LBPA interacts with NPC2 and/or ALIX to regulate cellular cholesterol traffic, and would affect ASFV infection. Thus, we show that LBPA blocking impacted ASFV infection at both early and late infection, suggesting a function for this unconventional phospholipid in the ASFV viral cycle. Here, we found for the first time that silencing of VPS4A and ALIX affects the infection later on, and blocking LBPA function reduces ASFV infectivity at early and later stages of the viral cycle, while ALIX was overexpressed upon infection. These data suggested the relevance of ESCRT-related proteins in ASFV infection.


Subject(s)
African Swine Fever Virus , Endosomal Sorting Complexes Required for Transport , Swine , Animals , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , African Swine Fever Virus/genetics , Calcium-Binding Proteins/metabolism , Endosomes/metabolism , Endocytosis
6.
Sci Rep ; 13(1): 11310, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37443182

ABSTRACT

Lloviu cuevavirus (LLOV) was the first identified member of Filoviridae family outside the Ebola and Marburgvirus genera. A massive die-off of Schreibers's bats (Miniopterus schreibersii) in the Iberian Peninsula in 2002 led to its initial discovery. Recent studies with recombinant and wild-type LLOV isolates confirmed the zoonotic nature of the virus in vitro. We examined bat samples from Italy for the presence of LLOV in an area outside of the currently known distribution range of the virus. We detected one positive sample from 2020, sequenced the complete coding region of the viral genome and established an infectious isolate of the virus. In addition, we performed the first comprehensive evolutionary analysis of the virus, using the Spanish, Hungarian and the Italian sequences. The most important achievement of this study is the establishment of an additional infectious LLOV isolate from a bat sample using the SuBK12-08 cells, demonstrating that this cell line is highly susceptible to LLOV infection and confirming the previous observation that these bats are effective hosts of the virus in nature. This result further strengthens the role of bats as the natural hosts for zoonotic filoviruses.


Subject(s)
Chiroptera , Filoviridae , Marburgvirus , Animals , Filoviridae/genetics , Cell Line , Italy , Phylogeny
7.
Viruses ; 15(5)2023 04 29.
Article in English | MEDLINE | ID: mdl-37243184

ABSTRACT

African swine fever virus (ASFV) encodes more than 150 proteins, most of them of unknown function. We used a high-throughput proteomic analysis to elucidate the interactome of four ASFV proteins, which potentially mediate a critical step of the infection cycle, the fusion and endosomal exit of the virions. Using affinity purification and mass spectrometry, we were able to identify potential interacting partners for those ASFV proteins P34, E199L, MGF360-15R and E248R. Representative molecular pathways for these proteins were intracellular and Golgi vesicle transport, endoplasmic reticulum organization, lipid biosynthesis, and cholesterol metabolism. Rab geranyl geranylation emerged as a significant hit, and also Rab proteins, which are crucial regulators of the endocytic pathway and interactors of both p34 and E199L. Rab proteins co-ordinate a tight regulation of the endocytic pathway that is necessary for ASFV infection. Moreover, several interactors were proteins involved in the molecular exchange at ER membrane contacts. These ASFV fusion proteins shared interacting partners, suggesting potential common functions. Membrane trafficking and lipid metabolism were important categories, as we found significant interactions with several enzymes of the lipid metabolism. These targets were confirmed using specific inhibitors with antiviral effect in cell lines and macrophages.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine , Animals , African Swine Fever Virus/physiology , Viral Fusion Proteins/metabolism , Proteomics , Cell Line
8.
J Med Chem ; 66(8): 5465-5483, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37021830

ABSTRACT

Ebola virus (EBOV) is a single-strand RNA virus belonging to the Filoviridae family, which has been associated to most Ebola virus disease outbreaks to date, including the West African and the North Kivu epidemics between 2013 and 2022. This unprecedented health emergency prompted the search for effective medical countermeasures. Following up on the carbazole hit identified in our previous studies, we synthetized a new series of compounds, which demonstrated to prevent EBOV infection in cells by acting as virus entry inhibitors. The in vitro inhibitory activity was evaluated through the screening against surrogate models based on viral pseudotypes and further confirmed using replicative EBOV. Docking and molecular dynamics simulations joined to saturation transfer difference-nuclear magnetic resonance (STD-NMR) and mutagenesis experiments to elucidate the biological target of the most potent compounds. Finally, in vitro metabolic stability and in vivo pharmacokinetic studies were performed to confirm their therapeutic potential.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Molecular Dynamics Simulation , Mutagenesis , Virus Replication
9.
J Chromatogr A ; 1671: 463006, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35395450

ABSTRACT

Nonconventional wastewater treatments, such as vegetation filters (VFs), are propitious systems to attenuate contaminants of emerging concern (CECs) in small municipalities. The development of standardised multiresidue and multimatrix methods suitable for measuring a reliable number of CEC in environmental samples is crucial for monitoring infiltrating concentrations and for ensuring these systems' treatment capacity. The objective of this study is to develop and validate an analytical method for the simultaneous determination of CECs, including transformation products (TPs), with diverse physico-chemical properties, in environmental samples. The optimised method is based on sample clean-up and preconcentration by solid-phase extraction (SPE), followed by liquid chromatography electrospray ionization tandem mass spectrometry (LC-MS/MS). The method is able to detect and quantify 40 target CECs, including pharmaceuticals of different classes (analgesics, antibiotics, antihypertensives, lipid regulators, anticonvulsants, antidepressants, antiarrhythmics, beta-blockers, amongst others), hormones and lifestyle products with good reproducibility (variations below 23%), in different water matrices, and 28 CECs, in soil samples. Acceptable recoveries (65-120%) were obtained for most of the CECs in all the matrices. However in the soil samples, as complexity required a prior extraction treatment, the recovery of some analytes was affected, which reduced the number of target CECs. The achieved methodological quantification limits (0.05-5 ng/L and 0.04-1.1 ng/g levels for the water and the soil matrices, respectively) were reasonably low for most CECs. The proposed method was successfully applied to monitor CECs in a VF. The CECs detected at higher concentrations are some of the world's most widely used products (e.g. acetaminophen or caffeine and its main TP, paraxanthine). The results showed an almost 70% reduction in CEC concentrations during infiltration. The groundwater data indicated that the VF treatment operation did not affect the underlying aquifer (Cmax found in GW <1 µg/L).


Subject(s)
Water Pollutants, Chemical , Water Purification , Chromatography, Liquid/methods , Reproducibility of Results , Soil , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods , Wastewater/chemistry , Water/analysis , Water Pollutants, Chemical/analysis
10.
Int J Mol Sci ; 23(7)2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35408808

ABSTRACT

Microtubule targeting agents (MTAs) have been exploited mainly as anti-cancer drugs because of their impact on cellular division and angiogenesis. Additionally, microtubules (MTs) are key structures for intracellular transport, which is frequently hijacked during viral infection. We have analyzed the antiviral activity of clinically used MTAs in the infection of DNA and RNA viruses, including SARS-CoV-2, to find that MT destabilizer agents show a higher impact than stabilizers in the viral infections tested, and FDA-approved anti-helminthic benzimidazoles were among the most active compounds. In order to understand the reasons for the observed antiviral activity, we studied the impact of these compounds in motor proteins-mediated intracellular transport. To do so, we used labeled peptide tools, finding that clinically available MTAs impaired the movement linked to MT motors in living cells. However, their effect on viral infection lacked a clear correlation to their effect in motor-mediated transport, denoting the complex use of the cytoskeleton by viruses. Finally, we further delved into the molecular mechanism of action of Mebendazole by combining biochemical and structural studies to obtain crystallographic high-resolution information of the Mebendazole-tubulin complex, which provided insights into the mechanisms of differential toxicity between helminths and mammalians.


Subject(s)
COVID-19 Drug Treatment , Mebendazole , Animals , Antiviral Agents/pharmacology , Mammals , Mebendazole/pharmacology , Microtubules , SARS-CoV-2 , Tubulin
11.
PLoS Pathog ; 18(1): e1009784, 2022 01.
Article in English | MEDLINE | ID: mdl-35081156

ABSTRACT

African swine fever virus (ASFV) infectious cycle starts with the viral adsorption and entry into the host cell. Then, the virus is internalized via clathrin/dynamin mediated endocytosis and macropinocytosis. Similar to other viruses, ASF virion is then internalized and incorporated into the endocytic pathway. While the endosomal maturation entails luminal acidification, the decrease in pH acts on the multilayer structure of the virion dissolving the outer capsid. Upon decapsidation, the inner viral membrane is exposed to interact with the limiting membrane of the late endosome for fusion. Viral fusion is then necessary for the egress of incoming virions from endosomes into the cytoplasm, however this remains an intriguing and yet essential process for infection, specifically for the egress of viral nucleic acid into the cytoplasm for replication. ASFV proteins E248R and E199L, located at the exposed inner viral membrane, might be implicated in the fusion step. An interaction between these viral proteins and cellular endosomal proteins such as the Niemann-Pick C type 1 (NPC1) and lysosomal membrane proteins (Lamp-1 and -2) was shown. Furthermore, the silencing of these proteins impaired ASFV infection. It was also observed that NPC1 knock-out cells using CRISPR jeopardized ASFV infection and that the progression and endosomal exit of viral cores was arrested within endosomes at viral entry. These results suggest that the interactions of ASFV proteins with some endosomal proteins might be important for the membrane fusion step. In addition to this, reductions on ASFV infectivity and replication in NPC1 KO cells were accompanied by fewer and smaller viral factories. Our findings pave the way to understanding the role of proteins of the endosomal membrane in ASFV infection.


Subject(s)
African Swine Fever Virus/pathogenicity , African Swine Fever/virology , Endosomes/virology , Host-Pathogen Interactions/physiology , Viral Proteins/metabolism , African Swine Fever Virus/metabolism , Animals , Chlorocebus aethiops , Endosomes/metabolism , HEK293 Cells , Humans , Swine , Vero Cells
12.
Antiviral Res ; 194: 105167, 2021 10.
Article in English | MEDLINE | ID: mdl-34450201

ABSTRACT

Niemann-Pick type C1 (NPC1) receptor is an endosomal membrane protein that regulates intracellular cholesterol traffic. This protein has been shown to play an important role for several viruses. It has been reported that SARS-CoV-2 enters the cell through plasma membrane fusion and/or endosomal entry upon availability of proteases. However, the whole process is not fully understood yet and additional viral/host factors might be required for viral fusion and subsequent viral replication. Here, we report a novel interaction between the SARS-CoV-2 nucleoprotein (N) and the cholesterol transporter NPC1. Furthermore, we have found that some compounds reported to interact with NPC1, carbazole SC816 and sulfides SC198 and SC073, were able to reduce SARS-CoV-2 viral infection with a good selectivity index in human cell infection models. These findings suggest the importance of NPC1 for SARS-CoV-2 viral infection and a new possible potential therapeutic target to fight against COVID-19.


Subject(s)
Biological Transport , COVID-19 Drug Treatment , Endosomes/virology , Niemann-Pick C1 Protein/analysis , SARS-CoV-2/physiology , Animals , Carbazoles/pharmacology , Chlorocebus aethiops , Endosomes/chemistry , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins , Membrane Fusion , Vero Cells , Virus Replication
13.
Viruses ; 13(6)2021 06 17.
Article in English | MEDLINE | ID: mdl-34204411

ABSTRACT

African swine fever virus (ASFV) is an acute and persistent swine virus with a high economic burden that encodes multiple genes to evade host immune response. In this work, we have revealed that early viral protein UBCv1, the only known conjugating enzyme encoded by a virus, modulates innate immune and inflammatory signaling. Transient overexpression of UBCv1 impaired activation of NF-κB and AP-1 transcription factors induced by several agonists of these pathways. In contrast, activation of IRF3 and ISRE signaling upon stimulation with TRIFΔRIP, cGAS/STING or RIG-I-CARD remained unaltered. Experiments aimed at mapping UBCv1 inhibitory activity indicated that this viral protein acts upstream or at the level step of IKKß. In agreement with this, UBCv1 was able to block p65 nuclear translocation upon cytokine stimulation, a key event in NF-ĸB signaling. Additionally, A549 stably transduced for UBCv1 showed a significant decrease in the levels of NF-ĸB dependent genes. Interestingly, despite the well-defined capacity of UBCv1 to conjugate ubiquitin chains, a mutant disabled for ubiquitylation activity retained similar immunomodulatory activity as the wild-type enzyme, suggesting that the two functions are segregated. Altogether these data suggest that ASFV UBCv1 manipulates the innate immune response targeting the NF-κB and AP-1 pathways and opens new questions about the multifunctionality of this enzyme.


Subject(s)
African Swine Fever Virus/enzymology , Immunity, Innate , Immunomodulation , NF-kappa B/genetics , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/immunology , A549 Cells , African Swine Fever Virus/immunology , Animals , HEK293 Cells , Humans , Interferon Type I/immunology , NF-kappa B/immunology , NF-kappa B/metabolism , Signal Transduction/immunology , Swine , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/metabolism
14.
Eur J Med Chem ; 223: 113654, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34175537

ABSTRACT

Niemann-Pick C1 (NPC1) receptor is an intracellular protein located in late endosomes and lysosomes whose main function is to regulate intracellular cholesterol trafficking. Besides being postulated as necessary for the infection of highly pathogenic viruses in which the integrity of cholesterol transport is required, this protein also allows the entry of the Ebola virus (EBOV) into the host cells acting as an intracellular receptor. EBOV glycoprotein (EBOV-GP) interaction with NPC1 at the endosomal membrane triggers the release of the viral material into the host cell, starting the infective cycle. Disruption of the NPC1/EBOV-GP interaction could represent an attractive strategy for the development of drugs aimed at inhibiting viral entry and thus infection. Some of the today available EBOV inhibitors were proposed to interrupt this interaction, but molecular and structural details about their mode of action are still preliminary thus more efforts are needed to properly address these points. Here, we provide a critical discussion of the potential of NPC1 and its interaction with EBOV-GP as a therapeutic target for viral infections.


Subject(s)
Glycoproteins/metabolism , Niemann-Pick C1 Protein/metabolism , Antibodies/immunology , Antibodies/pharmacology , Ebolavirus/metabolism , Glycoproteins/chemistry , Hemorrhagic Fever, Ebola/drug therapy , Hemorrhagic Fever, Ebola/pathology , Humans , Molecular Docking Simulation , Niemann-Pick C1 Protein/chemistry , Niemann-Pick C1 Protein/immunology , Protein Binding , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Small Molecule Libraries/therapeutic use , Virus Internalization/drug effects
15.
Antiviral Res ; 186: 105011, 2021 02.
Article in English | MEDLINE | ID: mdl-33428961

ABSTRACT

Despite the efforts to develop new treatments against Ebola virus (EBOV) there is currently no antiviral drug licensed to treat patients with Ebola virus disease (EVD). Therefore, there is still an urgent need to find new drugs to fight against EBOV. In order to do this, a virtual screening was done on the druggable interaction between the EBOV glycoprotein (GP) and the host receptor NPC1 with a subsequent selection of compounds for further validation. This screening led to the identification of new small organic molecules with potent inhibitory action against EBOV infection using lentiviral EBOV-GP-pseudotype viruses. Moreover, some of these compounds have shown their ability to interfere with the intracellular cholesterol transport receptor NPC1 using an ELISA-based assay. These preliminary results pave the way to hit to lead optimization programs that lead to successful candidates.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery/methods , Niemann-Pick C1 Protein/metabolism , Protein Interaction Domains and Motifs/drug effects , Viral Envelope Proteins/metabolism , Virus Internalization/drug effects , Animals , Antiviral Agents/isolation & purification , Chlorocebus aethiops , HEK293 Cells , HeLa Cells , Hemorrhagic Fever, Ebola/drug therapy , Humans , Vero Cells
16.
J Med Chem ; 63(21): 12359-12386, 2020 11 12.
Article in English | MEDLINE | ID: mdl-32511912

ABSTRACT

Currently, humans are immersed in a pandemic caused by the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which threatens public health worldwide. To date, no drug or vaccine has been approved to treat the severe disease caused by this coronavirus, COVID-19. In this paper, we will focus on the main virus-based and host-based targets that can guide efforts in medicinal chemistry to discover new drugs for this devastating disease. In principle, all CoV enzymes and proteins involved in viral replication and the control of host cellular machineries are potentially druggable targets in the search for therapeutic options for SARS-CoV-2. This Perspective provides an overview of the main targets from a structural point of view, together with reported therapeutic compounds with activity against SARS-CoV-2 and/or other CoVs. Also, the role of innate immune response to coronavirus infection and the related therapeutic options will be presented.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Amino Acid Sequence , Animals , Drug Repositioning , Enzyme Inhibitors/therapeutic use , Humans , Immunity, Innate/drug effects
18.
Front Microbiol ; 11: 622907, 2020.
Article in English | MEDLINE | ID: mdl-33384682

ABSTRACT

African Swine Fever virus (ASFV) causes one of the most relevant emerging diseases affecting swine, now extended through three continents. The virus has a large coding capacity to deploy an arsenal of molecules antagonizing the host functions. In the present work, we have studied the only known E2 viral-conjugating enzyme, UBCv1 that is encoded by the I215L gene of ASFV. UBCv1 was expressed as an early expression protein that accumulates throughout the course of infection. This versatile protein, bound several types of polyubiquitin chains and its catalytic domain was required for enzymatic activity. High throughput mass spectrometry analysis in combination with a screening of an alveolar macrophage library was used to identify and characterize novel UBCv1-host interactors. The analysis revealed interaction with the 40S ribosomal protein RPS23, the cap-dependent translation machinery initiation factor eIF4E, and the E3 ubiquitin ligase Cullin 4B. Our data show that during ASFV infection, UBCv1 was able to bind to eIF4E, independent from the cap-dependent complex. Our results provide novel insights into the function of the viral UBCv1 in hijacking cellular components that impact the mTORC signaling pathway, the regulation of the host translation machinery, and the cellular protein expression during the ASFV lifecycle.

19.
Sci Total Environ ; 705: 135825, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-31818606

ABSTRACT

The use of surface water impacted by wastewater treatment plant (WWTP) effluents for crop irrigation is a form of unplanned water reuse. Natural attenuation processes can buffer contamination spreading. However, this practice can promote the exposure of crops to contaminants of emerging concern, such as pharmaceuticals, trace metals (TMs) and metalloids, posing a risk to health. This research aimed to evaluate the presence of 50 pharmaceuticals, some transformation products, 7 TMs and a metalloid in the water-sediment-soil-plant system, and their potential to be bioaccumulated into edible parts of plants, as a result of the unplanned water reuse. The study site consists of an extensive agricultural land downstream Madrid city (Spain) where surface water, strongly impacted by WWTP effluents, is applied through gravity-based systems to cultivate mainly maize. Sampling campaigns were conducted to collect WWTP effluent, surface and irrigation water, river sediments, agricultural soils and maize fruits. Results demonstrate the ubiquitous presence of several pharmaceuticals. The concentration pattern in irrigation water did not resemble the pattern of contents in soils and plants. The pharmaceuticals included in the EU surface water watch lists were quantified in the lowest concentration range (macrolide antibiotics, ciprofloxacin) or were not detected (most of the hormones). Therefore, hormones do not represent an emerging risk in our scenario. The TMs and the metalloid in water and agricultural soils should not arise any concern. Whereas, their presence in the river sediments may have an adverse impact on aquatic ecosystems. Only acetaminophen, ibuprofen, carbamazepine, nicotine, Zn, Cu and Ni were quantified in corn grains. Calculated parameters to assess bioaccumulation and health risk indicate that neither pharmaceuticals nor TMs pose a threat to human health due to consumption of maize cultivated in the area. Results highlight the need to include different environmental matrices when assessing contaminant fate under real field-scale conditions.


Subject(s)
Agricultural Irrigation , Cities , Ecosystem , Humans , Metals , Soil , Spain , Wastewater , Water , Water Pollutants, Chemical
20.
Viruses ; 11(9)2019 09 17.
Article in English | MEDLINE | ID: mdl-31533244

ABSTRACT

Animal diseases constitute a continuing threat to animal health, food safety, national economy, and the environment. Among those, African swine fever (ASF) is one of the most devastating viruses affecting pigs and wild suids due to the lack of vaccine or effective treatment. ASF is endemic in countries in sub-Saharan Africa, but since its introduction to the Caucasus region in 2007, a highly virulent strain of ASF virus (ASFV) has continued to circulate and spread into Eastern Europe and Russia, and most recently into Western Europe, China, and various countries of Southeast Asia. Given the importance of this disease, this review will highlight recent discoveries in basic virology with special focus on proteomic analysis, replication cycle, and some recent data on genes involved in cycle progression and viral-host interactions, such as I215L (E2 ubiquitin-conjugating enzyme), EP402R (CD2v), A104R (histone-like protein), QP509L, and Q706L (RNA helicases) or P1192R (Topoisomerase II). Taking into consideration the large DNA genome of ASFV and its complex interactions with the host, more studies and new approaches are to be taken to understand the basic virus-host interaction for ASFV. Proteomic studies are just paving the way for future research.


Subject(s)
African Swine Fever Virus/genetics , African Swine Fever/virology , Host-Pathogen Interactions , Proteomics , RNA Helicases/genetics , African Swine Fever/epidemiology , African Swine Fever Virus/enzymology , Amino Acid Substitution , Animals , Swine , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...